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1 One Degree of Freedom

With a single coordinate q, with associated momentum p, Phase space can be modeled by R2. Let A and B be
two real functions of R2. The Poisson bracket on R2 is given by

{A,B} = ∂A

∂q

∂B

∂p
− ∂A

∂p

∂B

∂q
.

This bracket is a Lie bracket and hence R2 is a Lie algebra.

The Lie algebra of analytic functions over R2 has an important subspace, the space of finite polynomials
R[q, p]. Because each monomial in this space is linearly independant1, the bilinearity of the Poisson bracket
implies that we need only consider Lie brackets of the form,

{qapb, qcpd} = (ad− bc)qa+c−1pb+d−1.

Therefore, we see explicitly that R[q, p] is a Lie subalgebra.

The degree of a monomial is the sum of its exponents,

deg qapb = a+ b.

We then see that the Poisson bracket of a monomial with degreemwith a monomial of degreen ism+n−2.
That is to say,

deg{qapb, qcpd} = a+ b+ c+ d− 2. (1)

Polynomials whose terms all share the same degree are said to be of homogeneous degree. In this
language, R[q, p] can be written as the direct sum of subspaces of homogeneous degree,

R[q, p] =
∞⊕
n=1

Pn,

where the linear subspace of homogeneous polynomials of degree n is given by

Pn = span
{
qapb

∣∣∣ a+ b = n
}
.

1If this is not immediatley clear to you, verify this claim as an exercise.
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2 A Polynomial Representation of sl(2,R)

Proposition 2.1. Under the Poisson bracket, P2 is a subalgebra of R[q, p].

Proof. Let both a+ b and c+ d equal two. Then by (1), we see that deg{qapb, qcpd} also equals two.

The space P2 is three-dimensional, as there are precisely three quadratic monomials,

P2 = span{q2, p2, qp}.

Restricted to P2, the Poisson bracket is nonsingular, as we can see by direct computation,

{q2, p2} = 4qp, {qp, q2} = −2q2, {qp, p2} = 2p2. (2)

Proposition 2.2. P2 is isomorphic as a Lie algebra to sl(2,R).

Proof. We prove this by brute force. First recall that sl(2,R) is a three-dimensional vector space of traceless
matrices,

σ =

(
1 0
0 −1

)
, σ+ =

(
0 1
0 0

)
, σ− =

(
0 0
1 0

)
.

It is a Lie algebra under the usual commutator of matrices, which are given explicitly by

[σ, σ±] = ±2σ±, [σ+, σ−] = σ.

Both Lie algebras P2 and sl(2,R) are three-dimensional. Hence if we can show that they have identical Lie
brackets, we are done. To that end, define,

σ ← −qp, σ+ ← −
1

2
q2, σ− ←

1

2
p2.

We can then compute, using (2),

{σ, σ+} =
1

2
{qp, q2} = −q2 = 2

(
−1

2
q2
)

= 2σ+.

Also

{σ, σ−} =
1

2
{−qp, p2} = −p2 = −2

(
1

2
p2
)

= −2σ−.

Finally,

{σ+, σ−} = −
1

4
{q2, p2} = −qp = σ.

Hence all brackets agree and P2 is therefore isomorphic to sl(2,R).
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3 The Adjoint Representation

Recall that to each element g of a Lie algebra g, we can write the adjoint operator adg ,

adg : g→ g,

where for each h in g,
adg : h 7→ [h, g].

Using the exponential map, we can promote the adjoint operator to a member of the Lie group2. Let θ be
an constant parameter, this group member is given by

eθadg =
∞∑
n=0

1

n!
θnadng .

Let us consider a specific example in the case of P2. In particular, we’ve seen that the matrix σ− − σ+ gives
us the antisymmetric matrix K that generates rotations,

K = σ− − σ+ =

(
0 −1
1 0

)
.

Let us verify this remains true for the case of P2. In this instance we have

K ← 1

2

(
q2 + p2

)
.

Let us compute the adjoint action of K on the coordinate q.

adK · q = {q,K} = 1

2
{q, p2} = p.

Similarly we can compute the next few powers of adK ,

ad2K · q = {p,K} = 1

2
{p, q2} = −q.

Again,

ad3K · q = {−q,K} = −p.

Finally, we see that this pattern repeats, where

ad4K · q = {−p,K} = −1

2
{p, q2} = q.

Iterating, we see that

ad2nK · q = (−1)nq, ad2n+1
K · q = (−1)np.

Hence,

eθadk · q =

∞∑
n=0

(−1)n

(2n)!
θ2nq +

(−1)n

(2n+ 1)!
θ2n+1p = cos θq + sin θp.

So K does indeed generate rotations in P2, the polynomial representation of sl(2,R).

2This group member then acts on the Lie algebra.
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Exercise 1. Repeat this analysis for the hypoerbolic rotations, (σ+ + σ−), and the dilatatons, σ. What
operator corresponds to the Nilpotent matrix N(x)?
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