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In this episode we describe the Lie algebra of matrices sp(2n,R) that generate the linear symplectomor-
phisms, Sp(2n,R).

1 SL(2,R) as a manifold

Let’s warm up with the case where n = 1.

Previously we have seen that the dimension of SL(2,R) is three. This is the dimension in a manifold sense,
which is to say SL(2,R) represents a space that looks locally like R3, but globally has nontrivial structure1.

The Lie algebra of generators, however, can be thought of as those matrices infinitestimally close to the
identity. Geometrically speaking, some might call a coordinate chart near the identity, or, by extension, a tangent
space. One way to model this idea is to use the exponential map.

Let us write a member M of SL(2,R) in terms of a matrix Q,

M = eQ =

∞∑
n=0

1

n!
Qn.

The condition that detM = 1 translates into a condition on Q,

detM = eTrQ,

so that detM = 1 implies TrQ vanishes2.

Up to constant factors, there are precisely three two-by-two, traceless matrices,

σ =

(
1 0
0 −1

)
, σ+ =

(
0 1
0 0

)
, σ− =

(
1 0
1 0

)
.

These span the Lie algebra sl(2,R) which generates Sp(2n,R).
1That is to say, a small enough neighborhood around a point will be indistguishable from a vector space. Curiously, the three-

dimensional manifold SL(2,R) cannot even be properly immersed in R3, which means that any attempt to visualize what the group
might look like would not fairly represent the group.

2You can derive the trace relation using Jacobi’s formula for the derivative of a determinant.
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1.1 The Lie algebra sl(2,R)

Because there are only three linearly independent matrices, it is worthwhile to compute the explicit Lie brackets
to determine the precise algebraic relationships between members of sl(2,R).

Exercise 1. Verify by explicit computation that

[σ, σ±] = ±2σ±, and [σ+, σ−] = σ.

1.2 Examples

Let us revisit some familiar examples by showing how the Lie algebra generates the one-parameter subgroups of
SL(2,R) we’ve already discussed.

Define the matrix K as

K = σ− − σ+ =

(
0 −1
1 0

)
.

Proposition 1.1. The rotation matrix R(θ) can be written as

R(θ) = eθK .

Proof. Let us expand the exponential,

eθK =

∞∑
n=0

1

n!
θnKn.

It helps to observe that

K2 =

(
0 −1
1 0

)(
0 −1
1 0

)
= −I.

Hence K3 = −K . Hence K4 = I. This cycle then repeats. Notably, even powers of K are proportional
to I and hence odd powers are proportional to K . In particular,

K2n = (−1)nI, K2n+1 = (−1)nK.

Plugging these results into the exponential expansion we have - after splitting even and odd terms -

eθK =
∞∑
n=0

(−1)n

(2n)!
θ2nI+

(−1)n

(2n+ 1)!
θ2n+1K.

But these are just the expansions of the familiar triganometric functions,

eθK = cos θI+ sin θK.

Which is just the rotation matrix3 R(θ).

3With a different sign convention than previously used.
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Exercise 2. Repeat the above analysis for the case

Y = σ+ + σ−,

and show that Y generates the hyperbolic rotations H(θ), i.e. show that

H(θ) = eθY .

Hence show that the matrix σ generates the dilatations, i.e. that

D(λ) = eλσ.

As a final example, let us consider the matrix generated by σ+,

exσ+ =
∞∑
n=0

1

n!
xnσn

+.

This series terminates almost immediately, as

σ2
+ =

(
0 1
0 0

)(
0 1
0 0

)
=

(
0 0
0 0

)
.

Hence the series is just given by the upper triangular matrix

exσ+ = I+ xσ+ = N(x).

Physically, this corresponds to a Gallilean boost, where

q 7→ q + xp, p 7→ p.

One can think of this as a reference frame shift, as you might experience while seated in a car moving at
constant velocity.

Exercise 3. Repeat this analysis with σ−. Does this one-parameter subgroup also map to the additive group
of the reals? What can you say about the transpose, in this case?

2 The Lie algebra of Sp(2n,R)

Consider a small member of the symplectic group Sp(2n,R) continuously connect to the identity matrix,
which we can parametrize by an infinitestimal ϵ,

M = I+ ϵµ+O(ϵ)2.

We can expand the symplectic condition

MTJM = J,

in powers of ϵ, (
I+ ϵµT +O(ϵ)2

)
J(I+ ϵµ+O(ϵ)2) = J.
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This equation is trivally true to zeroth order. To first order, we find the analogus defining relation for the
Lie algebra sp2nR,

µTJ + Jµ = 0. (1)

That is to say, we have the group element defined in terms of µ by the exponential map

M(ϵ) = eϵµ.

Let us explore the consequences of (1).

Given that J is blocked into four n× n matrices, let us similarly block out µ,

µ =

(
A B
C D

)
, (2)

where A,B,C,D are n× n matrices. Plugging into (1),(
AT CT

BT DT

)(
0 I

−I 0

)
=

(
0 −I
I 0

)(
A B
C D

)
.

This implies (
−CT AT

−DT BT

)
=

(
−C −D
A B

)
.

Examining the blocks we find that originally off-diagonal blocks B and C are symmetric matrices,

B = BT and C = CT.

This implies that B and C each have n(n+ 1)/2 independent elements. The other two equatons imply
the identical constraint4,

A = −DT.

We can summarize this by writing (
A B

C −AT,

)
(3)

for B and C symmetric, and A just a square matrix.
This constraint halves the number of independent elements in the two sets of n2 entries5. Hence, the total

number of linearly independent generators in the symplectic group Sp(2n,R) - the number of basis elements
of sp2nR is

dim sp2nR = 2n2 + n.

We shall explore the physical ideas behind these individual generators in a later aside.

The representation theory of Sp(2n,R) has some interesting topological complications that are deeply
related to the operator algebra in Quantum Mechanics. We shall begin our study of these representation next.

4Which for the case of n = 1 just amounts to the tracelessness condition
5Recall that the Lie algebra associated to GL(n,R) is essentially unconstrained, thanks to the exponential map construction.
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3 Representative Examples of sp(2n,R)

3.1 qp-Rotations

It is amusing to note that while note a symplectomorphism, J is a member of the Lie algebra sp(2n,R), as

JT = −J,

so

JTJ + J2 = 0.

Let us consider the group element generated by J ,

eαJ =

∞∑
n=0

1

n!
αnJn.

Notice that J2 = −I, and hence J3 = −J , and J4 = I. This is precisely the same pattern we’ve seen with
the rotation matrix generated by K in sl(2,R), above. Hence,

eαJ = cosαI+ sinαJ.

Expanding this in block diagonal terms,

eαJ =

(
cosαI sinαI

− sinαI cosαI

)
.

In terms of the phase space coordinates qi and pi, this transformation amounts to a simulteneous rotation
amongst all the individual coordinate/momentum pairs,

qi 7→ cosαqi + sinαpi, pi 7→ − sinαqi + cosαpi.

Exercise 4. How would you establish a pair-dependent rotation amongst all the q, p-pairs in phase space.
That is, how would you generate a group element that rotates each pair (qi, pi) through a distinct angle αi?

3.2 qq-Rotations

In general, a rotation matrix satisfies two conditions, first the detR(θ) = 1, and second it is orthogonal in
the sense that

R(θ)T = R(θ)−1.

If we write our matrix in terms of some generator Q,

R(θ) = eθQ,

then we have that6

R(θ)T = eθQ
T
.

But since R(θ)T equals R(θ)−1, we must have that QT = −Q. That is, rotations are generated by
antisymmetric matrices.

6To show this, it helps to observe that (MN)T = NTMT.
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Now let Q be some matrix in the Lie algebra sl(2n,R. Using our block decomposition (3), suppose
B = C = 0, and A is antisymmetric. Then

Q =

(
A 0

0 −AT

)
.

But A is antisymmetric, so

Q =

(
A 0

0 A

)
.

Since R(θ) = eθA rotates amongst the coordinates qi, we see that ( as the solution to a previous exercise )
this requires an identical, simultenous rotation amongst the momenta as well. That is to say,

M = eθQ =

(
R(θ) 0

0 R(θ)

)
.

3.3 Nilpotent Matrices

A matrix M is said to be nilpotent if there exists some n such that Mn = 0. For example, the two-by-two
matrices σ± are nilpotent. As a final example, let us consider a matrix Q in sp(2n,R), where A = C = 0 in
terms of (3). It is easy to see that this matrix is also nilpotent.

Q2 =

(
0 B

0 0

)(
0 B

0 0

)
= 0.

We can then readily expand the exponential,

eαQ =

(
I αB

0 I

)
.

This is another example of a “Gallilean boost”, where we now send the phase space coordinates to

qi 7→ qi + α
n∑

j=1

Bijpj , pi 7→ pi.

Note that any nondiagonal B will impose boosts symmetrically on different coordinates.
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