

The Lie Group SL₂R

Sean Downes

Episode #03 · October 28, 2025

The goal of this episode is to identity and study the Lie group of linear transformations of two-dimensional phase space the preserve the Poisson Bracket. We will identity the associated Lie algebra and a concrete construction of it.

I Linear Transformations and the Poisson Bracket

Given a finite-dimensional vector space V, any two nonzero members v, w of V can be related by a linear transformation, M,

$$w = Mv$$
, $v = M^{-1}w$.

Put differently, we say that the general linear group GL(V) acts transitively on the nonzero vectors V. You can show this by explicitly producing such a matrix once you specify a basis.

The set of all such invertible matrices constitutes the group of *automorphisms* of V. By definition, these are the maps that preserve its structure as a vector space. In this case, the most important features are *linearity* and the *dimension*.

Let \mathcal{P} be the 2n-dimensional phase space associated to n independent position vectors q^i and their associated momentum vectors p_i . This vector space - which we use to study the dynamics of physical objects - comes equipped with additional structure. Any rotation of the position vectors should have a corresponding rotation amongst the momenta. It is sometimes said that p_i is *soldered* to q^i . This is the meaning of the second Hamilton equation,

$$\dot{q}^i = \frac{\partial E}{\partial p_i}.$$

An automorphism of $\mathcal P$ that preserves the Hamilton equations preserves the physics. For historical reasons such an automorphism has been called a **symplectomorphism**^{$\mathrm I$}

Given our previous discussion, it's also clear that such a symplectomorphism of phase space induces an isomorphism of the Lie algebra $(\mathcal{F}(\mathcal{P}), \{\cdot, \cdot\})$. Indeed, this fact offers a simple way to detect which members of $\mathsf{GL}(\mathcal{P})$ are symplectomorphisms. A symplectomorphism should preserve the Poisson Bracket.

^{&#}x27;The notion of a symplectomorphism extends to the general case where \mathcal{P} is a manifold. In the present discussion we shall restrict ourselves to the case of *linear* symplectomorphisms, as the general case - even or perhaps especially on \mathbb{R}^4 - is wildly complicated.

2 The Case of Two Dimensions

For a single pair q, p, the most general linear transformation is a matrix,

$$M = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right).$$

M acts on \mathcal{P} in such a way that,

$$M: q \mapsto aq + bp, \quad M: p \mapsto cq + dp.$$

The Poisson bracket of these transformed quantities is,

$${aq + bp, cq + dp} = (ad - bc){q, p} = \det M$$

Immediately we see that M must have unit determinant. In this case one can show that for any two functions on phase space A and B,

$$M: \{A, B\} \mapsto \frac{1}{\det M} \{A, B\}.$$

And so we see that a necessary and sufficent condition for M to preserve the Poisson Bracket in two-dimensions is that M belong to the special linear group, $\mathsf{SL}(2,\mathbb{R})$. This is precisely the subgroup of $\mathsf{GL}(2,\mathbb{R})$ whose elements have unit determinant.

Proposition 2.1. $\mathsf{SL}(2,\mathbb{R})$ is a proper subgroup of $\mathsf{GL}(2,\mathbb{R})$.

Proof. Let M and N be two matrices in $SL(2,\mathbb{R})$ and consider their product MN. By rules of determinants,

$$\det(MN) = \det M \det N.$$

By hypothesis, $\det M = \det N = 1$, hence $\det MN$ is also 1, and hence MN belongs to $\mathsf{SL}(2,\mathbb{R})$.

The identity matrix also has unit determinant. For each M, the inverse matrix M^{-1} must satisfy

$$MM^{-1} = \mathbb{I}$$

Hence by the above argument, $\det M^{-1}$ is also 1. Hence $\mathsf{SL}(2,\mathbb{R})$ is a subgroup of $\mathsf{GL}(2,\mathbb{R})$.

To show that it is a proper subgroup, we need only note that the determinant of a matrix in $\mathsf{GL}(2,\mathbb{R})$ may take any nonzero value, which in particular may differ from 1. Hence there are plenty of matrices in $\mathsf{GL}(2,\mathbb{R})$ that are not in $\mathsf{SL}(2,\mathbb{R})$.

Proposition 2.2. The dimension of $SL(2, \mathbb{R})$ is three.

Proof. The dimension of any two-by-two matrix is at most four, since there are only four entries to parametrize the group. Indeed, dim $GL(2,\mathbb{R})$ is four. For $SL(2,\mathbb{R})$, this dimensionality is reduced by the constraint that for any M defined as above,

$$\det M = ad - bc = 1.$$

As the parameters a, b, c, d are otherwise unobstructed, this reduces the dimensionality of $SL(2, \mathbb{R})$ to three.

3 Examples

3.1 Rotations

As a first example, consider the rotation matrix $R(\theta)$,

$$R(\theta) = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}.$$

We can compute,

$$\det R(\theta) = \cos^2 \theta - (-\sin^2 \theta) = \cos^2 \theta + \sin^2 \theta = 1.$$

Hence $R(\theta)$ belongs to $SL(2, \mathbb{R})$.

This matrix transforms the members of $\mathfrak P$ as follows,

$$q \mapsto \cos \theta q + \sin \theta p, \quad p \mapsto -\sin \theta q + \cos \theta p.$$

Why you would *want* to rotate *q* and *p* is another question, which we will get to in due course.

3.2 Hyperbolic Rotations

Next consider

$$H(\theta) = \begin{pmatrix} \cosh \theta & \sinh \theta \\ \sinh \theta & \cosh \theta \end{pmatrix}.$$

We can then compute,

$$\det H(\theta) = \cosh^2 \theta - \sinh^2 \theta = 1.$$

Hence again, $H(\theta)$ belongs to $SL(2, \mathbb{R})$.

This leads to a pretty wild transformation of the coordinates,

$$q \mapsto \cosh \theta q + \sinh \theta p, \quad p \mapsto \sinh \theta q + \cosh \theta p.$$

From a physicist's perspective, this corresponds to a Lorentz Boost familiar from Special Relativity.

3.3 Dilatations

As a third example, we can consider

$$D(\lambda) = \left(\begin{array}{cc} e^{\lambda} & 0\\ 0 & e^{-\lambda} \end{array}\right).$$

We can compute,

$$\det D(\lambda) = e^{\lambda} e^{-\lambda} = 1,$$

Hence $D(\lambda)$ belongs to $SL(2, \mathbb{R})$.

This leads to a pretty gnarly distortion of phase space,

$$q \mapsto e^{\lambda} q, \quad p \mapsto e^{-\lambda} p.$$

In a future example, we will see how to employ this mapping in a practical way.

3.4 A Nilpotent Case

Consider the following "parabolic" element,

$$N(x) = \left(\begin{array}{cc} 1 & x \\ 0 & 1 \end{array}\right).$$

This matrix clearly has determinant 1. What's interesting about this matrix is it's algebra,

Proposition 3.1. The upper triangular matrices N(x) form a proper subgroup of $\mathsf{SL}(2,\mathbb{R})$ isomorphic to the additive group of the reals, $(\mathbb{R},+)$.

Proof. Consider the product of two elements N(x) and N(y).

$$N(x)N(y) = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & x+y \\ 0 & 1 \end{pmatrix}.$$

The identity matrix \mathbb{I} belongs to this class of matrices, N(0). By the above calculation, we see that N(x)N(-x) equals N(0). Hence every such matrix has an inverse. So it is a group, and a proper subgroup at that.

The isomorphism between this subgroup and $\mathbb R$ is explicit.