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The goal of this episode is to identity and study the Lie group of linear transformations of two-dimensional
phase space the preserve the Poisson Bracket. We will identity the associated Lie algebra and a concrete construc-
tion of it.

1 Linear Transformations and the Poisson Bracket

Given a finite-dimensional vector space V , any two nonzero members v, w of V can be related by a linear
transformation, M ,

w = Mv, v = M−1w.

Put differently, we say that the general linear group GL(V ) acts transitively on the nonzero vectors V . You
can show this by explicitly producing such a matrix once you specify a basis.

The set of all such invertible matrices constitutes the group of automorphisms of V . By definition, these are
the maps that preserve its structure as a vector space. In this case, the most important features are linearity and
the dimension.

LetP be the 2n-dimensional phase space associated ton independent position vectors qi and their associated
momentum vectors pi. This vector space - which we use to study the dynamics of physical objects - comes
equipped with additional structure. Any rotation of the position vectors should have a corresponding rotation
amongst the momenta. It is sometimes said that pi is soldered to qi. This is the meaning of the second Hamilton
equation,

q̇i =
∂E

∂pi
.

An automorphism of P that preserves the Hamilton equations preserves the physics. For historical reasons
such an automorphism has been called a symplectomorphism1

Given our previous discussion, it’s also clear that such a symplectomorphism of phase space induces an
isomorphism of the Lie algebra (F(P), {·, ·}). Indeed, this fact offers a simple way to detect which members of
GL(P) are symplectomorphisms. A symplectomorphism should preserve the Poisson Bracket.

1The notion of a symplectomorphism extends to the general case where P is a manifold. In the present discussion we shall restrict
ourselves to the case of linear symplectomorphisms, as the general case - even or perhaps especially on R4 - is wildly complicated.
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2 The Case of Two Dimensions

For a single pair q, p, the most general linear transformation is a matrix,

M =

(
a b
c d

)
.

M acts on P in such a way that,

M : q 7→ aq + bp, M : p 7→ cq + dp.

The Poisson bracket of these transformed quantities is,

{aq + bp, cq + dp} = (ad− bc){q, p} = detM

.
Immediately we see thatM must have unit determinant. In this case one can show that for any two functions

on phase space A and B,

M : {A,B} 7→ 1

detM
{A,B}.

And so we see that a necessary and sufficent condition for M to preserve the Poisson Bracket in two-
dimensions is that M belong to the special linear group, SL(2,R). This is precisely the subgroup of GL(2,R)
whose elements have unit determinant.

Proposition 2.1. SL(2,R) is a proper subgroup of GL(2,R).

Proof. Let M and N be two matrices in SL(2,R) and consider their product MN . By rules of determinants,

det(MN) = detM detN.

By hypothesis, detM = detN = 1, hence detMN is also 1, and hence MN belongs to SL(2,R).

The identity matrix also has unit determinant. For each M , the inverse matrix M−1 must satisfy

MM−1 = I.

Hence by the above argument, detM−1 is also 1. Hence SL(2,R) is a subgroup of GL(2,R).

To show that it is a proper subgroup, we need only note that the determinant of a matrix in GL(2,R) may
take any nonzero value, which in particular may differ from 1. Hence there are plenty of matrices in GL(2,R)
that are not in SL(2,R).

Proposition 2.2. The dimension of SL(2,R) is three.

Proof. The dimension of any two-by-two matrix is at most four, since there are only four entries to parametrize
the group. Indeed, dimGL(2,R) is four. For SL(2,R), this dimensionality is reduced by the constraint that
for any M defined as above,

detM = ad− bc = 1.

As the parameters a, b, c, d are otherwise unobstructed, this reduces the dimensionality of SL(2,R) to three.
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3 Examples

3.1 Rotations

As a first example, consider the rotation matrix R(θ),

R(θ) =

(
cos θ sin θ

− sin θ cos θ

)
.

We can compute,

detR(θ) = cos2 θ − (− sin2 θ) = cos2 θ + sin2 θ = 1.

Hence R(θ) belongs to SL(2,R).

This matrix transforms the members of P as follows,

q 7→ cos θq + sin θp, p 7→ − sin θq + cos θp.

Why you would want to rotate q and p is another question, which we will get to in due course.

3.2 Hyperbolic Rotations

Next consider

H(θ) =

(
cosh θ sinh θ
sinh θ cosh θ

)
.

We can then compute,

detH(θ) = cosh2 θ − sinh2 θ = 1.

Hence again, H(θ) belongs to SL(2,R).

This leads to a pretty wild transformation of the coordinates,

q 7→ cosh θq + sinh θp, p 7→ sinh θq + cosh θp.

From a physicist’s perspective, this corresponds to a Lorentz Boost familiar from Special Relativity.

3.3 Dilatations

As a third example, we can consider

D(λ) =

(
eλ 0
0 e−λ

)
.

We can compute,

detD(λ) = eλe−λ = 1,

Hence D(λ) belongs to SL(2,R).

This leads to a pretty gnarly distortion of phase space,

q 7→ eλq, p 7→ e−λp.

In a future example, we will see how to employ this mapping in a practical way.
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3.4 A Nilpotent Case

Consider the following “parabolic” element,

N(x) =

(
1 x
0 1

)
.

This matrix clearly has determinant 1. What’s interesting about this matrix is it’s algebra,

Proposition 3.1. The upper triangular matrices N(x) form a proper subgroup of SL(2,R) isomorphic to
the additive group of the reals, (R,+).

Proof. Consider the product of two elements N(x) and N(y).

N(x)N(y) =

(
1 x
0 1

)(
1 y
0 1

)
=

(
1 x+ y
0 1

)
.

The identity matrix I belongs to this class of matrices, N(0). By the above calculation, we see that
N(x)N(−x) equals N(0). Hence every such matrix has an inverse. So it is a group, and a proper subgroup at
that.

The isomorphism between this subgroup and R is explicit.
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