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The aim of this lecture is give a concrete demonstration of the exponential map between the Lie algebra and
its associated Lie group. Specifically, we’ll use the Lie algebra F(P) and the energy function to study the time
evolution of a physical system.

1 The Adjoint Operator

From the Hamilton equations we have already seen that the time derivative of a function over P is given by,

dA

dt
= {A,E}.

Let us take the Leibniz notation for the time derivative seriously and consider it as an operator on our Lie
algebra F(P). To bring in a little Lie theory, the adjoint operator associated to an element B of F(P) is a
linear endomorphism1 adB :

adB : F(P) → F(P),

defined by its action on some element A,

adB ·A = {A,B}.

The idea is that the adjoint operator build from B means “take the Lie bracket with B”. Hence, we may
explicitly represent the time derivative as an adjoint operator,

d

dt
⇝ adE . (1)

Incidentally, the adjoint operators form a representation of F(P) under the commutator of composition
maps,

{A,B}↭ [adA, adB] = adA ◦ adB − adB ◦ adA.

By this we mean that if C = {A,B}, then

[adA, adB] = adC ,

which the pendants can verify directly as an exercise.
1That is, a map from a given space to itself.
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2 The Exponential Map

One way to understand the relationship between Lie groups and their Lie algebras is to think about analytic
functions. Given (??), we know that qi(t) and pi(t) are functions of time and that hence any A(q, p) in F(P)
is also an implicit function of time. Assuming that A is analytic at some point in phase space, this means that we
should have a Taylor expansion,

A(t⋆) =
∞∑
n=0

1

n!
(t⋆ − t)n

dn

dtn
A.

Here we have chosen t⋆ to be the specific point in time corresponding to a specific point in P on a trajectory
at a fixed energy E. What’s most important for our purposes is the presence of the an infinite series of time
derivatives. Let us express this in a more familiar way. Let α be a real number. Then,

exp(α
d

dt
) =

∞∑
n=0

1

n!
αn dn

dtn
.

If we think of α as the amount of time traversed, t⋆ − t, then this operator effectively generates a time
translation of some function A(t) by way of the Taylor expansion,

exp(α
d

dt
) ·A(t) = A(t+ α).

Using our identification (1), we have a representation of the time evolution on F(P ) in terms of the Poisson
bracket.

eαadE ·A(q(t), p(t)) = A(q(t+ α), p(t+ α)).

To recapitulate: The expontential map from the Lie algebra produces a member of the Lie group whose
actions on the function A(t) hinges on the Taylor series representation of an analytic function.

3 The Time Evolution of Position

3.1 The Time Evolution of Position

Let us consider a basic and important example. Suppose there is one degree of freedom with coordinate q, and
consider the action of

eαadE · q =
∞∑
n=0

1

n!
αn(adnE · q).

To explicitly represent this summation we need to compute some Poisson brackets. The first couple are
straightforward,

{q, E} =
p

m
, {{q, E}, E} =

1

m
{p,E} = − 1

m

dV

dq
.

After the third,

ad3E · q = − 1

m
{V ′(q), E} = − 1

m2
V ′′(q)p,

we see that things start to get convoluted,
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ad4E · q = − 1

m2

(
1

m
V ′′′(q)p2 − V ′′(q)V ′(q)

)
.

You are welcome to continue this series for another term or two. It’s pretty instructive for how these
complications arise.

Of course, this all makes sense. More complicated potentials can lead to more complicated dynamics. The
main culprit that causes multiplicative mixing of p and q appears to be the q dependence of V ′′(q). Let’s restrict
our attention to a couple of specific cases before these complication arise.

3.2 A Constant Potential

If V = V0, then our series terminates at ad2E ,

adE · q =
p

m
ad2E · q = 0.

Hence we have the expansion

eαadE · q = q + α{q, E} = q +
p

m
α.

We know from (??) that such a case implies that ṗ = 0, and hence the object has merely moved with constant
velocity.

q(t+ α) = q(t) +
p

m
α.

If you like, we can be more explicit. From the definition of E,

p = ±
√
2m(E − V0).

The sign of course represents the direction of motion. Hence if q0 is the position of the object at time t = 0,

q(t) = q0 ±
√

2m(E − V0)

m
t,

and so

eαadE · q = q0 ±
√

2m(E − V0)

m
(t+ α).

3.3 A Linear Potential

If V (q) = V0 + aq, with a a constant, the series terminates at ad3E ,

adE · q =
p

m
, ad2E · q = − a

m
, ad3E · q = 0.

In this case,

eαadE · q = q +
p

m
α− a

2m
α2.

This is constant accelerated motion, familiar from the study of the force of Gravity on the Earth’s surface.
Solving the Hamilton equations, we find that
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q(t) = − a

2m
t2 + βt+ γ,

for two integration constants β and γ. Hence

p(t) = − a

m
t+ β.

Plugging this in above we find,

eαadE · q = − a

2m
(t+ α)2 + β(t+ α) + γ.

3.4 A Quadratic Potential

Things get interesting once V becomes quadratic in q. While we certainly can consider a linear term in our
potential, for simplicitly, let shift our definition of q to center at the local minimum:

V = V0 +
1

2
kq2.

Note that any such shift generically changes the value of V0.

In any case, we see that the series of adjoint operators no longer terminates, but rather alternates,

adE · q =
p

m
, ad2E · q = − k

m
q.

Iterating,

ad3E · q = −
(

k

m

)
p

m
, ad4E · q =

(
k

m

)2

q.

and hence

ad2n+1
E · q =

(
− k

m

)n p

m
, ad2nE · q =

(
− k

m

)2n

q,

which you can readily verify by induction.

The main point is that even powers of adE result in a term proportional to q, and odd powers result in a
term proportional to p/m. Hence the series expansion of the exponential breaks down in a familiar way:

eαadE · q = cos(ωα)q + sin(ωα)
p

m
, (2)

where

ω = ±
√

k

m
.

Again the choice of sign amounts to the direction of motion. Now, solving the equations of motion, we
know that for a suitable choice of initial position,

q(t) = a cos(ωt),

where the amplitude a is related to the total energy of the object. Hence,
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p(t) = −amω sin(ωt).

Plugging into (2),

eαadE · q(t) = a cos(ωα) cos(ωt)− a sin(ωα) sin(ωt).

Using the familiar triganometric identity,

cos(α+ β) = cosα cosβ − sinα sinβ,

we see that this amounts to

eαadE · q(t) = a cos(ω(t+ α)).

As we’ve seen above, as soon as the potential becomes cubic or higher, the resulting equations of motion are
nonlinear and the associated Poisson brackets become convoluted. You are welcome to explore higher powers on
your own to get a feel for how out of hand things can get. There is plenty of opportunity to explore applications
of number theory, including restricted partitions of integers.
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